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SUMMARY 

Three-dimensional algorithms for the numerical computation of flows caused by tides or meteorological 
forcing are developed for four of Arakawa's spatial grid types using a spectral method in the vertical 
dimension. Three of the grids, in which the velocity components are computed at the same grid points, offer 
potential advantages over the commonly used C-grid. The computed results from the four grids are 
compared for three test problems based on the linearized hydrodynamical equations. It is concluded that the 
B-grid provides a viable alternative to the C-grid, with significant advantages when a spectral method is 
used. 
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TNTR ODUCTI ON 

Some of the computationally most efficient numerical algorithms for three-dimensional simula- 
tion of flows in coastal seas have been based on a spectral method for the vertical co-ordinate 
combined with finite differences in the horizontal  direction^.'-^ Most of the finite difference 
schemes that have been developed for such hydrodynamical modelling have been based on an 
Arakawa C-grid, starting with the two-dimensional algorithms of Hansen, Leendertse and 
others*-'' down to the more recent three-dimensional algorithms"-'4 and including the 
algorithms based on the spectral method.'-7 While this choice of grid has the advantage of 
providing natural centred difference approximations to most of the dominant terms and of 
minimizing numerical dispersion,' it does lead to certain difficulties for some three-dimensional 
computations. 

The first of these6 is the occurrence of spurious numerical boundary layers unless the Coriolis 
terms are treated carefully. Since the two horizontal velocity components are computed at 
different spatial points with a C-grid, it is necessary to average the Coriolis terms in each 
momentum equation over the four neighbouring points at which the opposite velocity compon- 
ent is computed. Adjacent to a coast, one or more of these four points will actually lie on the coast, 
and the velocity components at such points are maintained at zero by the usual algorithms. The 
result is that the four-point average gives an incorrect value for the interior point, and this leads to 
spurious velocities near the coast. 

This difficulty does not arise for two-dimensional models based on the depth-averaged 
equations, since it is correct within the model to set the depth-averaged velocity components 
equal to zero at coastal points. Within the approximations of the usual three dimensional models, 

027 1-209 1/92/0 10109-1 6$08.00 
0 1992 by John Wiley & Sons, Ltd. 

Received November 1990 
Revised March 1991 



110 R. W. LARDNER AND Y. SONG 

however, the velocity profile through the water column is not zero at a coast: the narrow coastal 
boundary layer in which the flow overturns, accommodating itself to the physical boundary 
condition of zero normal flow, is not contained within the usual model equations. It is worth 
noting that the problem does not arise for certain three-dimensional algorithms of the splitting 
type13314 in which the C-grid is used only for the depth-averaged equations, and the vertical 
profiles are computed for both velocity components at the same horizontal grid points. 

It has been pointed out by Jamart and Ozer6 that for algorithms using a spectral method this 
problem may be overcome by averaging the Coriolis terms only over the adjacent points that are 
interior to the water body (called the 'wet-points-only' method). While this method is successful, it 
has the disadvantage of reducing the order of the local truncation error at near-coastal points, 
and this may produce a serious loss of accuracy for a region with an intricate coastline and 
consequently a large proportion of near-coastal points. 

A second and probably more serious disadvantage of the C-grid which arises for spectral 
methods is that it is necessary to use the same basis functions at all grid points if the four-point 
average for the Coriolis terms is to give reasonably simple modal equations. The most efficient 
choice for the basis functions is to use eddy viscosity eigenf~nctions,',~. since the modal 
equations are then decoupled. These are independent of position only if the eddy viscosity 
function has the same vertical profile at all points, apart from an overall scaling factor, and this is 
a severe restriction for a water body with widely varying parameters such as depth or bottom 
roughness. If this condition on the eddy viscosity is not satisfied, the Coriolis terms couple the 
modal equations. 

Because of these problems, it appears worthwhile to consider using an alternative spatial grid 
for which both horizontal velocity components are computed at the same grid points. Of the five 
grid types described by Arakawa and Lamb,' those labelled A, B and E (see Figure 1) satisfy this 
requirement, so will certainly be simple to use when the eddy viscosity has arbitrary spatial 
variation. Since the two velocity components are computed at the same point, an additional 
benefit is that the two momentum equations can be solved simultaneously rather than sequen- 
tially as is necessary for the C-grid. This allows explicit treatment of the Coriolis terms to be easily 
avoided. 

The A-, B- and E-grids lead to numerical schemes for the shallow water equations that have 
worse numerical dispersion than does the C-grid, particularly at wavelengths shorter than four 
grid lengths. However, the hydrodynamical models with which we are concerned involve 
significant damping through eddy viscosity and bottom friction, and to the extent we have tested 
these alternative grids, this does appear to be sufficient that the anomalous dispersion at short 
wavelengths does not cause difficulties. Arakawa's D-grid has both disadvantages of poor 
dispersion properties and velocity components at different points, so we have not considered it. 

In Sections 2 and 3 we write down the basic equations for the spectral method, using eddy 
viscosity eigenfunctions as basis functions, and develop the appropriate numerical schemes for 
the A-, B-, C- and E-grids. For the purpose of comparison of the different spatial grids, we have 
based the schemes on the linearized hydrodynamical equations. In Section 4 the different schemes 
are compared using three test problems. 

2. NUMERICAL SCHEMES 

2.1. Basic equations 

We use x, y, z as Cartesian co-ordinates with the z-axis pointing vertically upwards and the 
xy-plane occupying the undisturbed position of the water surface. The following list summarizes 
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the rest of the notation to be used: 

water depth 
surface elevation at time t 
horizontal velocity components 
depth-integrated volume transports 
Coriolis parameter 
vertical eddy viscosity 
acceleration due to gravity 
fluid density 
coefficient of bottom friction 
components of shear stress on the free surface. 

The depth-integrated continuity equation takes the form 

a i  a P  aq -+-+-=0,  
at ax ay 

where the volume transports are defined as 
0 0 

p = j  udz, y = j  vdz. 
- h  - h  

In the horizontal momentum equations as applied to flows in coastal seas it is usual to neglect 
the terms involving horizontal shear stress, which are small, and in many cases the advective 
terms are also negligible. Assuming a homogeneous sea, neglecting also the direct influence of 
tide-generating forces and making the usual hydrostatic pressure approximation, these equations 
may be written as 

at 

(3) 

The boundary conditions on the free surface and bottom are taken to be 

au a0 
p N - = r ,  az and p N - = z Y  aZ on z=O, 

where a linear form for bottom stress has been assumed, with IC the coefficient of bottom friction. 
A no-slip condition on the bottom is obtained in the limiting case K -00. 

As discussed by Hunter,I6 the use of the form (4) for bottom stress is applicable in certain 
physical situations, although in most applications it would be more appropriate to use a quad- 
ratic dependence of bottom stress on velocity. However, here we are not concerned with using the 
most widely applicable physical model but rather with comparing the accuracy of various 
numerical algorithms, and for this purpose the linearized equations (3) and (4) are adequate. The 
most serious criticism of the grids other than the C-grid concerns the inaccurate dispersion at 
short wavelengths, and if this were to cause problems, they would show up in the linearized model 
(1)-(4). (It is, however, worth mentioning that the B-grid algorithm described later has been 
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extended to include both the advective terms and quadratic bottom friction and has been found 
to give accurate results in test  problem^.)'^ 

It is convenient to use a a-co-ordinate, defined as usual by 

a= 1 +z/h, z = -h(l  - a). 

The momentum equations and boundary conditions can then be combined in complex form as 

au 
N-=hS aa on a=l, 

au 
a0 N--JchU=O on o=O, 

where 

(7) 
z, + iz, U = u +iv, S = - .  

P 

2.2. Eddy viscosity eigenexpansion 

The fundamental idea of the spectral method'-7 is to expand the velocity components in terms 
of some set of basis functions. As originally proposed by Heaps,lr2 it is advantageous to use as 
these functions the eigenfunctions of the Sturm-Liouville problem 

a4 -=0 8 4  on a=l. N--Ichc$=O on 0=0, aa aa (9) 

For a general eddy viscosity the eigenpairs {c$j(o), A j }  depend on x and y and perhaps also on t. 
We assume the eigenfunctions are normalized in such a way that 

j: +j(a)2do=1. (10) 

Rather than expanding U directly, we obtain a more rapidly convergent series7 if the function 

is first subtracted. Writing U (a) = V(o)  + W(a), we obtain the following boundary value problem 
for W 

aw aw 
aa aa 

N--KhW=O on O=O, -=0 o n o = l ,  

where 
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The essential point is that the boundary conditions (13) are now homogeneous. We now expand 
W in terms of the eigenfunctions: 

In view of condition (10) and the usual orthogonality property of the eigenfunctions, the 
coefficients in the expansion (15) are given by 

f l  

Multiplying the differential equation (12) by #j(e), integrating from o=O to CT= 1 and using the 
boundary conditions (9) and (13), we obtain the following uncoupled system of differential 
equations for these modal  amplitude^:^ 

- + (h- '1: +if ) c j  = R,,(t) 
acj 
at 

where 

R,,(t)= -jol ~ ~ , ( o ) d c - i f  lo1 V#j(o)do. 

(17) 

(19) 

In the case when the eddy viscosity and surface shear stress are independent oft, the second of 
these reduces to 

if Sh 
R,,(t)= -~ #j(l). 

2; 

In order to obtain initial conditions for the system (17), we assume the motion starts from some 
given velocity U = U o  at t = 0. Then at t = 0, W= U o  - V, so the initial values of the coefficients are 
given by 

ci(o)= - 1: C U O ( ~ ) -  ~(c) l+ j (e )dc .  (21) 

For an initial state of rest, i.e. U = 0 at t = 0, we find 

Sh 
cj(o)= -- 4j(l). A; 

Before setting up the numerical scheme, we need the equation relating p and q to the coefficients 
cj.  From (2) we have 

p+iq=h [V(e)+ W(o)]do I: 
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3. FINITE DIFFERENCE SCHEMES 

3.1. Interior points 

Figure 1 shows the distribution of grid points at which the variables [, u and v are computed for 
the five horizontal grids investigated by Arakawa and Lamb. As discussed in Section 1, only the 
grids A, B, C and E will be considered here. For the A-, B- and E-grids all the variables u, v, p ,  
q and c j  are computed at the same points. For the C-grid scheme it is necessary to split equation 
(17) into two real equations, since the real and imaginary parts relate to different grid points, and 
we set 

cj=aj+ibj, RZj= R;j + iR,Yj. 

The spatial finite difference approximations to equations (1) and (17) appropriate for these four 
grids are as follows. 

Scheme A 

Scheme B 

Scheme C 

Scheme E 

ay __ - 
- at + (6, P)” + ( B y q ) Y  = 0, 

- at + 6 ,p  + 6,q = 0, 

aaj - 

at 
- + kjaj - f b, = Rlj6,y + R j ,  

ab, - 

at 
-+ kjbj+f aj=Rlj6,[+ RyZ,. 

a[ 
- + 6 ,p  + 6,q = 0, at 

acj 

at 
- +crjcj= R1 ,(S,l+ id,()+ R Z j .  

(It is worth noting that grid E can be regarded as two interlocking C-grids.) 
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A-grid 

m 
C-grid 

131 
E-grid 

B-grid 

D-grid 

0 [-point 

- u-point 

1 u-point 

Figure 1. Arakawa grids A-E 

In these equations the following notation is used for any net function P: 
(d .xP)m,n=Ax-  ( P m +  l / Z , n - P m -  1 / Z , n ) ,  ( d y P ) m , n  =AY - ‘ ( P m , n +  1/2 - P m , n -  l / Z h  

( B ” ) m , n  = f ( P m  + l j z ,  n + P m  - l / z ,  n ) ,  ( P ) m , n  = f ( P m , n +  112 + P m , n  - l / z ) y  

( p > m ,  n = t F y > m ,  n = ( F x ) m ,  n * 

Also, kj=h-’A? and aj= kj+if: It can be seen that the above schemes are all second-order in the 
spatial grid dimensions at points in the interior of the region. The treatment of boundary points in 
the various schemes will be discussed below. 

The time-differencing scheme used for all four grids has been a leapfrog scheme in which i and 
c j  are computed at alternating half-steps, with equations (1)  and (17) being used alternately to 
update each of these variables in turn.7 This scheme has the advantage of being explicit and also 
second-order in the time step, though the size of the time step is restricted by the CFL stability 
criterion. 

Since for the A-, B- and E-grids the two velocity components are taken at the same grid points, 
the differential equations for the c j  can be solved in complex form. Since this system is stiff, some 
care must be used in the choice of integration method. Writing equation (25), (27) or (31) in the 
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symbolic form 

we can update the solution over one time step from t to t + z by the approximation' 

cj(t +z)=cj(t)e-"j'+ G(t +~)e - " j (~ -~ )ds  l: 
xcj(t)e-"jT+G(t + $ z ) r j ,  (33) 

where 

The required value of G is found from [ at the intermediate half-step, which has already been 
determined from the continuity equation. 

For the C-grid the two real equations (29) must be integrated separately, but similar approx- 
imation formulae to (33) can be used, with aj replaced by k j  and the Coriolis terms included 
with G. In order to have a stable treatment of the Coriolis terms, the two equations (29a) and (29b) 
are used in alternating order in successive time steps. This also has the advantage of providing 
a second-order scheme. A similar situation would occur also for the D-grid. 

3.2. Treatment of boundary points 

At a coastal boundary the boundary condition is taken to be that the normal component of 
volume flux, p or q, is equal to zero. As discussed in Section 1, it is not assumed that the normal 
velocity is zero throughout the water column. At an open boundary it is assumed for simplicity 
that the surface elevation [ is prescribed. To illustrate how these boundaries are treated, examples 
of a left coastal boundary and a right open boundary are shown in Figures 2(ak2(d) for the four 
numerical schemes respectively. Scheme C is of course well known but is included for complete- 
ness. It will be seen that in all the schemes the local truncation error is increased at the boundary 
points from second to first-order. 

Scheme A: At point 1 in Figure 2(a) the boundary condition is p = O .  In order to compute c j  
from (25) at the adjacent interior point 2, it is necessary to know i at point 1. To compute this, (24) 
must be modified to have a one-sided difference in the x-direction; furthermore, q is required at 
the adjacent boundary points 3 and 4. These values can be found from (23), with cj being 
computed from a modified version of (25) that uses a one-sided difference in the x-direction. 

At the open boundary [ is given at point 5. In order to compute [ from (24) at the adjacent 
interior point 6, it is necessary to know p at point 5. This can be found from (23), with cj being 
computed from a modified version of (25) that uses a one-sided difference in the x-direction. 

Scheme B. At points 1 and 2 in Figure 2(b) the boundary condition is p =O. In order to compute 
[ at the adjacent interior point 3, (26) must be modified to have a one-sided average of the q-term 
in the x-direction. In this scheme q is not computed at the boundary points 1 and 2, since use of 
(27) at these points would necessitate an extrapolation of [-values. 

At the open boundary [ is given at points 5 and 6 and c j  can be computed from (27) without 
modification at the adjacent interior point 7. 
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Figure 2. Treatment of coastal and open boundaries for A-, B-, C- and E-grids 

Scheme C.  At point 1 in Figure 2(c) the boundary condition is p = 0 and 5 may be computed 
from (28) without modification at the adjacent interior point 2. The quantities uj are not 
computed at the point 1. To compute bj from (29b) at the interior point 3, all that is needed is to 
use Jamart and Ozer’s wet-points-only averaging for the Coriolis term, i.e. to exclude points such 
as point 1 that lie on the boundary. 
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At the open boundary [ is given at point 5. In order to compute a j  at the adjacent interior point, 
again (29a) is modified by including only interior points in the Coriolis term. The quantities b, are 
not computed at points such as point 7 that lie on the boundary. 

Scheme E .  At point 1 in Figure 2(d) the boundary condition is p = 0. In order to compute [ from 
(30) at the adjacent interior point 2, it is necessary to know q at points 3 and 4. These can be found 
from (23), with c j  being computed at points 3 and 4 from a modified version of (31) that uses an 
extrapolated one-sided difference of in the x-direction. 

At the open boundary [ is given at point 5. In order to compute c j  from (31) at the adjacent 
interior point 6, it is necessary to know [ at points 7 and 8. This can be found from (30) with an 
extrapolated one-sided difference used for p in the x-direction. The use of extrapolated one-sided 
differences in this scheme is a potential weakness. 

4. MODEL PROBLEMS 

4.1. Closed rectangular sea 

The four algorithms have been compared and tested using three model problems. The first of 
these is a simplified storm surge model of the North Sea used by Davies and Owen3 and 
subsequently by several investigators to test algorithms. The model region consists of a closed 
rectangular sea of dimensions 400 km in the x-direction and 800 km in the y-direction, with grid 
spacings Ax = 400/9 km and Ay = 800/17 km. The depth is taken uniformly as 65 m. The sea is 
initially in a state of equilibrium and starting at t = 0 is subjected to a constant surface shear stress 
in the negative y-direction with values z,=O, zy= - 1.5 NmP2.  The values of the other para- 
meters (all in MKS units) are p = 1025, N = 0.065, K = 0002, g = 9-81 and f= 1.22 x A time 
step z=360 s was used. 

Some typical computed results are shown in Table I, where typical velocity profiles after 30 h 
are tabulated for each of the four numerical schemes. The results are given for two grid points, one 
near the centre and one near the edge of the rectangle. An analytical solution is not known for this 
problem, so as a means of testing the accuracy of the numerical results, the same model problem 
has been recomputed using the B-grid scheme with grid spacings and time step equal to 
one-quarter of those stated above, and the results of this computation are listed in the first 
column of the table. Since the algorithms are all second-order at interior points and first-order at 
boundary points, it can be expected that the errors in the first column of the table are somewhere 
between one-quarter and one-sixteenth of the errors in the third column. 

Comparing with the accurate numerical solution in the first column, we can see that Schemes 
B, C and E produce much more accurate results than scheme A. This is not surprising, in fact, 
since the approximations to the spatial derivatives in equations (24) and (25) involve finite 
differences over intervals of twice the size of those in the other three schemes. There appears to be 
little difference in accuracy among schemes B, C and E. 

Secondly, none of the schemes generate spurious numerical boundary layers, presumably 
because for schemes A, B and E the momentum equations are solved at the same point and 
averaging is not needed for the Coriolis terms. For scheme-C such boundary layers do occur if the 
wet-points-only averaging is not employed.6 

Thirdly, the CPU time required per time step of computation is about the same for schemes A, 
B and C but is approximately twice as much for scheme E. Again this is to be expected, since for 
the same grid spacing the E-grid has twice as many grid points as the other three grids, which all 
have about the same number of points. 
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Table I. Accurate and computed velocity profiles after 300 steps (30 h) for first test problem. Units are mms-’. Level 1 
is at the bottom and level 10 is at the surface. The two tabulations refer to the C-grid points (2,2) and (8, 10) respectively 

(The region is rectangular, running from (2,2) to (10, 18).) 

Accurate solution Scheme A Scheme B Scheme C Scheme E 

Level U v U U U v U U U u 

10 -97 -385 -129 -375 -98 -397 -91 -387 -94 -395 
9 -83 -239 -116 -229 -84 -251 -83 -241 -80 -248 
8 -48 -125 -81 -115 -49 -136 -48 -126 -45 -133 
7 - 5  -38 -38 -29 -6 -49 -5 -40 -2 -47 
6 38 24 5 31 36 13 38 22 39 16 
5 75 67 43 73 74 56 75 65 76 59 
4 102 93 71 97 101 83 102 91 103 87 
3 116 106 86 108 114 96 116 104 116 100 
2 115 106 89 107 I14 97 115 105 115 101 
1 100 93 78 92 99 85 101 91 100 88 

10 -144 -338 -148 -380 -148 -349 -145 -353 -144 -347 
9 -130 -193 -134 -235 -134 -204 -131 -207 -130 -202 
8 -94 -79 -98 -120 -98 -89 -95 -93 -94 -88 
7 - 50 5 -52 -35 -53 -4 -50 -8 -49 -3 
6 -5 66 -7 26 -8 56 -5 52 -4 57 
5 34 106 33 68 31 97 34 93 35 98 
4 63 129 64 94 61 121 64 117 65 121 
3 80 137 82 105 78 131 82 121 82 130 
2 84 133 86 105 82 127 86 124 86 127 
1 74 114 76 92 72 110 75 107 75 109 

4.2. Open rectangular sea 

The second model problem is one for which an analytical solution can be found. The region is 
again rectangular but with open boundaries on all sides on which the volume transports are 
specified as given below. The water depth is uniformly 65 m and the other parameters are given 
the same values as in the closed-sea problem except that IC is zero. 

When the bottom friction is zero, the depth-integrated equations form a closed system. 
Integrating equations (3) from z = - h to z = 0 and using conditions (4) with K =0, we get 

8P a i  

84 a i  

--fq= at -gh-+ss,, ax 

Z+fp’ -gh-+sy, dY 
(34) 

where s, = z,/p and sy = z J p .  Equations (34) and (1) can be solved for p, q and i. 

a solution that starts from rest and is independent of y is given by 
Analytical solutions can be found that depend on only one of the co-ordinates x and y. If sy = 0, 

i=s,Z(x, t, L),  p = s X P ( x ,  t, LA q=s,Q(x, t, 1A 
where x runs from zero to 1, and 

Z(x, t, I ) =  - 1  c [ 1 --Cos (y)] COS (y ), 
nodd wff 
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with of =( f 1)’ + gh(n7c)’. By superimposing two of these solutions, we get a solution of the form 

i(x, Y ,  t ) = s , Z ( x ,  4 L)+S,Z(Y, 4 i,), 

P ( X ,  Y ,  t)=s,P(x, t, L ) - s Y Q ( y ,  t, lY), 

&, Y ,  t )  = s , Q k  t, 4) + ~ , P ( Y ,  t,  ly). 
This solution satisfies the boundary conditions 

p =  - s y Q ( y ,  t ,  1,) 

q=s,Q(x, t ,  I,) 
on x=O or Z,, 
on y=O or 1,. 

When the bottom friction is zero, the Sturm-Liouville problem (8), (9) has a zero eigenvalue and 
the spectral amplitude of the corresponding (constant) eigenfunction is related to the depth- 
averaged solution discussed above. In the other modal equations (17) the coefficient RIj=O and 
the amplitudes c j  can be found independently of the depth-integrated equations. When S and 
N are independent oft, the solution is given by7 

ERRORS FOR sqrtu*u+v*v 

351 

’” Legend 
A SCHEME B 
X SCHEME C 

0 10 20 30 40 50 60 70 

Figure 3. RMS errors in velocity as a function of time step for schemes B and C 
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where kj=h-’;l? and x j =  kj+iJ: In the special case when N is constant, 

+ j ( a ) = 2 1 ’ 2 ~ ~ ~ [ j n ( l  -a)], A? =N(jz)’, kj=N(jn/h)’, 

for j 2 1, and the complete velocity field is given by 

The numerical results obtained for this test problem lead to conclusions that are consistent 
with those from the first model problem. Scheme A is considerably less accurate than schemes 
B, C and E and in fact is sufficiently inaccurate to be unusable with the chosen grid sizes. The 
computational errors from schemes B, C and E are of comparable magnitudes, with the E-grid 
being slightly more accurate than the other two but also being roughly twice as computationally 
expensive. 

Figure 3 shows the RMS (root mean square) error in u and u combined for the B- and C-grids for 
the first 600 steps. Up to about 240 time steps (24 h) the B-grid results are more accurate than those 
from the C-grid, between 240 and 450 steps the C-grid produces more accurate results and from 
450 to 600 steps the B-grid again becomes the more accurate. Graphs of the maximum errors in u 
and v over all grid points and levels are given in Figure 4 and show similar behaviour to the RMS 
errors. Up to about 300 steps the maximum errors in both u and u are smaller for the B-grid than 
for the C-grid, then the C-grid becomes more accurate for a number of steps, but at 600 steps the B- 
grid again has smaller maximum errors in both components of velocity. 

0 

;r( 

0 
L 

- 
? 
2 
x 
a 
E 

0 2 0  4 0  6 0  8 0  

tlrnes 

X 
a 
E 

for B-grid 
+ for C-grid 

for 9-grid 
+ for C-grid 

tlrnes 

Figure 4. Maximum absolute errors in velocity as a function of time step 
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Table 11. Exact and computed velocity profiles after 300 steps (30 h) for third test 
problem. Units are mm s-’. Level 1 is at the bottom and level 10 is at the surface. The 
three tabulations refer to the B-grid points (2,2), (7,9) and (9,6) respectively. (The region 
is irregular, consisting of a rectangle running from (1, 1) to (10, 12) minus two 3 x 3 

squares in the upper left and lower right corners.) 
~ ~~ ~~ 

Accurate solution Scheme B Scheme C 

Level U V U V U 0 

10 
7 
4 
1 

10 
7 
4 
1 

10 
7 
4 
1 

- 132 
- 40 

69 
77 

- 162 
- 69 

46 
62 

- 157 
- 65 

48 
63 

-381 
- 36 

91 
87 

-391 
- 46 

83 
82 

- 394 
- 49 

79 
80 

- 133 
- 42 

66 
75 

- 161 
- 69 

43 
59 

- 155 
- 64 

46 
61 

-381 
- 37 

89 
86 

- 393 
- 47 

80 
80 

- 388 
- 43 

83 
81 

- 134 
- 43 

66 
74 

- 168 
- 75 

37 
56 

- 158 
- 66 

44 
60 

- 373 
- 29 

96 
91 

-401 
- 56 

72 
75 

- 392 
- 46 

80 
79 

4.3. Region with irregular boundaries 

Finally, we have compared the accuracies of the B- and C-grid algorithms when the region has 
a boundary of irregular shape. The region consists of a rectangle of size 7 x 9 minus two squares of 
size 3 x 3 grids in the lower right and upper left corners of the rectangle. The other parameters and 
the wind stress are the same as in the first problem. As in the first problem, the control solution 
was computed using one of the algorithms with a much finer grid and smaller time step. 

The velocity components after 300 steps at four levels and at three randomly scattered points 
within the region are given in Table IT. It can be seen that the accuracies of the two algorithms are 
comparable, with the B-grid producing somewhat more accurate values at most of the chosen 
points and levels. 

5. CONCLUSIONS 

Algorithms have been developed for the numerical solution of the three-dimensional tidal 
equations using a spectral method in the vertical dimension and finite differences in the horizon- 
tal. Four difference schemes have been constructed based on the Arakawa A-, B-, C-  and E-grids 
shown in Figure 1. While the C-grid has traditionally been used for such hydrodynamical 
computations, the other three grids offer significant advantages when a spectral method is used in 
the vertical, especially in that they allow eddy viscosity functions to be used that vary quite 
arbitrarily with position without introducing coupling among the modal equations. 

A second advantage of these three grids is that none of them produces the spurious numerical 
boundary layers that can occur for the C-grid unless the Coriolis terms are treated using 
‘wet-points-only’ averaging at coastal points.6 A third benefit is that the two modal momentum 
equations can be solved simultaneously in complex form, allowing explicit numerical treatment of 
the Coriolis terms to be easily avoided (see equations (32) and (33)). 
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The four algorithms have been compared using three test problems. The conclusions reached 
are as follows. 

The numerical errors arising for the A-grid were very significantly greater than those for the 
other three grids, the reason being, presumably, that the finite difference approximations to the 
various spatial derivatives must use intervals of twice the size. 

The numerical errors for the E-grid were generally slightly lower than those for the C-grid for 
both test problems. The disadvantage of using the E-grid is that the computational cost is about 
twice that of the C-grid for the same grid dimensions. The computational costs of the B- and 
C-grids are about the same. 

Both the RMS and maximum numerical errors in the velocity components for the B- and 
C-grids fluctuated in both relative and absolute magnitudes as the computations progressed. For 
the second problem, in which an analytical solution is known, over the first 600 time steps (60 h of 
real time) the B-grid results were on average slightly more accurate than those of the C-grid. 

It is significant that the errors are almost uniform through the water column in every case, i.e. 
they are concentrated in the lowest mode. When the bottom friction is zero, as in the second test 
problem, the lowest mode is governed by the shallow water equations (1) and (34) in which there is 
no damping. It is therefore a pleasant surprise that the inferior numerical dispersion properties of 
the B- and E-grids at short  wavelength^'^ do not lead to substantially greater errors in this 
problem than those for the C-grid. Both grids lead to stable algorithms for these undamped 
equations. 

For a two-dimensional (depth-averaged) model the C-grid appears to have no disadvantages 
compared to the other grids. This would presumably also be true for a three-dimensional 
multilevel or splitting method. For spectral method algorithms, however, this grid imposes severe 
limitations on the physical model if the computation is to be easily feasible. Our results suggest 
that the B-grid can provide a viable alternative at the same computing cost and accuracy of 
solution without imposing such limitations. 

Finally, it is worth noting that the spectral method with the Arakawa B-grid described in this 
paper has been extended to include the non-linear terms arising from advection and bottom 
friction” and has also been used to compute flow driven by density gradient.” Very accurate 
results have been obtained in test problems in both these extensions, and in an application of the 
second case, values were obtained that are consistent with earlier computations as well as with 
a rather limited amount of field data. 
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